
Makalah IF2211 Strategi Algoritma – Semester II Tahun 2024/2025

Adaptive Citation Extraction with Regex and String

Matching for Multiple Source Types and Auto-

Conversion

Heleni Gratia Meitrina Tampubolon - 135231071

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia
1helenigratia@gmail.com, 13523107@std.stei.itb.ac.id

Abstract— Creating citations is an important part of academic

writing, but many existing tools require users to manually choose

the type of source and follow strict input formats. This paper

presents a simple and adaptive method to extract citation details

using concept of string matching, that is regular expressions

(regex). The system can automatically find key information such as

author names, publication dates, DOIs, and journal titles from

different kinds of sources, like research articles, news websites, and

blogs. After collecting the data, it can turn it into proper citation

formats like APA, MLA, or Chicago using a flexible design. This

method helps make citation easier and faster, especially when

working with many links from different websites.

Keywords—Citation, Regex, Pattern Matching

I. INTRODUCTION

Citations are written references to sources of information used

in academic or other scholarly works. These sources can include

journal articles, books, websites, or various other forms of

media. A citation provides a concise description of the source,

typically including crucial information such as the author's

name, work title, journal or publisher, volume, publication date,

and other identifying details.

Figure 1.1. Citation Structure

Source: [1]

The primary function of citation is to acknowledge the

intellectual contributions of previous authors or researchers.

Moreover, citations ensure the absence of plagiarism by clearly

indicating which parts of a text are derived from or adapted from

other sources. This practice also allows readers to easily trace

and verify the information presented, helps make the work more

trustworthy and believable. The importance of citations

becomes especially evident in writing academic papers or

scholarly publications, given that citations form a cornerstone of

academic integrity.

Given the sheer volume of academic literature and the

increasing complexity of research, the manual process of

identifying, extracting, and standardizing citations can be

exceedingly time-consuming and prone to human error.

Automating citation extraction becomes very important as it

greatly reduces the manual work for researchers and writers. An

automated system can quickly scan large amounts of text, find

citation patterns, and pull out important details faster and more

consistently than people can. This not only makes the process of

literature review and reference management easier but also

ensures better accuracy and following of different citation

styles, allowing users to spend more time on writing content

instead of boring administrative tasks.

To facilitate citation management, various tools are available,

both as websites and applications, including Mendeley,

Quillbot, and even built-in features within Google Docs. Within

the academic world, there are also various standardized citation

styles, such as MLA (Modern Language Association), APA

(American Psychological Association), and Chicago Manual of

Style, each with its own specific formatting rules.

Despite the availability of these tools and citation styles, the

process of extracting citations from free-form text still poses a

significant challenge, particularly when faced with diverse

formatting. Therefore, this paper focuses on adaptive citation

extraction using a combination of regular expressions (regex)

and string matching. Regex is a sequence of characters that

forms a search pattern, enabling the identification of complex

and varied text patterns. This approach allows for a flexible and

efficient pattern search process within texts, even for citations

that lack strict structural uniformity.

Through the application of this method, this paper aims to

offer preliminary insights and a practical basis for further

exploration in the field of automated information extraction,

particularly in reference and citation management. While it may

not present a major breakthrough, the findings are intended to

support the ongoing development of more accurate, user-

friendly, and intelligent systems for automating scholarly

writing and literature organization in the future.

II. THEORETICAL FRAMEWORK

A. String Matching
String matching is a fundamental computational technique

mailto:1helenigratia@gmail.com
mailto:13523107@std.stei.itb.ac.id

Makalah IF2211 Strategi Algoritma – Semester II Tahun 2024/2025

used to locate the presence and position of a specific pattern

within a larger body of text. In formal terms, the problem can be

defined as follows: given a text T of length n (where T is a long

string), and a pattern P of length m (where m <<< n), the

objective is to find the first occurrence of P in T [2]. That is, to

determine the index or position in T where a substring exactly

matches P. Various algorithms have been developed to perform

string matching efficiently, ranging from brute-force approaches

to more optimized methods such as Knuth-Morris-Pratt (KMP)

and Boyer-Moore (BM) algorithms. These algorithms differ in

terms of preprocessing, time complexity, and the strategy used

to compare characters between T and P. Regardless of the

method, the core goal remains the same, to detect exact matches

of a pattern within a larger string as quickly and accurately as

possible.

B. Regular Expression (Regex)

a. Definition

Regular expressions (regex) are sequences of characters that

define specific search patterns. By combining literal characters

with special symbols, regex allows for the precise specification

of string patterns. This capability enables regex to match a wide

variety of text structures, making it highly effective for tasks

such as searching within documents, replacing specific patterns,

validating user input, and parsing structured or unstructured

data.

In the context of string matching, regex provides a more

flexible and expressive approach compared to simple substring

search. A regular expression can match one or multiple

substrings within a larger text. For example, the pattern [a-z]+

matches any sequence of one or more lowercase letters, while

the pattern \d{3} matches exactly three digits.

b. Regex Syntax

1) Character

All characters, except those having special meaning in

regex, matches themselves. E.g., the regex x matches

substring "x", regex 7 matches "7", regex = matches

“=”, and regex @ matches "@".

2) Special Regex Characters

Certain characters have special functions in regex and

are not interpreted as literal characters. E.g. ., +, *, ?, ^,

$, (,), [,], {, }, |, and \.

3) Escape Sequences (\char)

Used to match a character that has special meaning in

regex. A backslash \ prefixes the special character.

Also used for common escape sequences.

E.g., \. matches "."; regex \+ matches "+"; and

regex \(matches "(".

4) A Sequence of Characters (or String)

Matches an exact sequence of characters and is case-

sensitive by default. E.g. Regex Saturday matches the

string "Saturday".

5) Character Classes (Bracket Lists)

Character classes allow matching any single character

from a defined set.

Table 2.1. Character Classes Regex

Source: Personal Collection

Notation Description

[abc] Matches any one of the characters

within the brackets.

[0-9] or

[A-Za-Z]

Matches any one character within the

specified range.

[^abc] Matches not one of the characters

within the brackets (negation).

6) Occurrence Indicators (or Repetition Operators)

These operators specify how many times the preceding

element of the regex must occur.

Table 2.2. Occurrence Indicators Regex

Source: Personal Collection

Notation Description

+ Matches one or more (1+) occurrences

of the preceding element.

* Matches zero or more (0+) occurrences

of the preceding element. It includes the

empty string if no match is found.

? Matches zero or one (optional)

occurrence of the preceding element.

{m,n} Matches exactly m to n (inclusive)

occurrences of the preceding element.

E.g. a{2,4} matches "aa", "aaa", or

"aaaa”

{m} Matches exactly m occurrences of the

preceding element. E.g. a{3} matches

"aaa"

{m,} Matches m or more (m+) occurrences of

the preceding element.

7) Meta-characters

Meta-characters are shorthand notations for common

character sets.

Table 2.3. Meta-characters Regex

Source: Personal Collection

Notation Description

. Matches any one character, except

newline (\n).

\d Matches any one digit character.

\D Matches any one non-digit character.

\w Matches any one "word" character

(alphanumeric and underscore).

\W Matches any one “non-word”

character.

\s Matches any one whitespace

character.

\S Matches any one non-whitespace

character.

8) Position Anchors

Position anchors do not match characters but specific

positions within the text, such as the beginning or end

of a line or word.

Table 2.4. Position Anchors Regex

Source: Personal Collection

Notation Description

^ Matches the start of a line.

$ Matches the end of a line.

\b Matches a word boundary (the

position between a word character

and a non-word character, or the

Makalah IF2211 Strategi Algoritma – Semester II Tahun 2024/2025

start/end of the string).

\B Matches a non-word boundary.

\< Matches the start of a word.

\> Matches the end of a word.

\A Matches the start of the entire input

string.

\Z Matches the end of the entire input

string.

9) Parenthesized Back References

Parentheses () are used not only to group parts of a

regular expression but also to create capturing groups.

These groups store the matched text, which can be

referenced later within the same expression or in

replacement operations.

To define a capturing group, enclose the desired part

of the pattern in parentheses.

E.g. The regex (ha)\1 matches the string "haha”, the \1

refers back to the text matched by the first group (ha).

c. Regex in Python

Python offers powerful support for regular expressions through

the built-in re module. This module provides various functions

and methods to work with regular expression patterns, enabling

pattern matching, searching, substitution, and more. [3]

1. re.compile(pattern, flags=0)

Compiles a regular expression pattern into a regex

object. This object can then be reused to perform

matching operations using methods like .match() and

.search().
import re

pattern = re.compile(r"\d+")

2. pattern.search(string[, pos[, endpos]])

This function to scan through the string to find the first

location where the pattern matches. Returns a match

object if found, or None otherwise.
result = pattern.search("Order #12345")

Matches "12345"

3. pattern.match(string[, pos[, endpos]])

This function attempts to match the regular expression

pattern only at the beginning of the specified string. If

a match is found, it returns a match object; otherwise,

it returns None.
result = pattern.match("123abc") #

Matches "123"

4. re.findall(pattern, string, flags=0)

This function returns all non-overlapping matches of

the pattern in the string as a list. If the pattern has

capturing groups, it returns a list of tuples.
matches = re.findall(r"\d+", "Item 1

costs 25 and item 2 costs 40")

Output: ['1', '25', '2', '40']

C. Brute Force Algorithm

a. Definition

The brute force algorithm is a straightforward problem-

solving approach that systematically examines all possible

solutions to identify the correct one. In the context of pattern

matching and string processing, brute force methods work by

exhaustively checking every possible position or combination

until the target pattern is found or all possibilities have been

tested.

Figure 2.1. Flowchart Brute Force Regex

Source: Personal Collection

b. Characteristics [4]

1. Simpilicty and Directness

The algorithm follows the most obvious and

straightforward approach to problem solving. Rather

than employing sophisticated optimization techniques,

it systematically checks every possible solution

candidate. This "just do it" philosophy ensures that the

implementation remains clear and easily

understandable, making it an excellent baseline

approach for complex problems.

2. Completeness and Reliability

One of the strongest advantages of brute force methods

is their guarantee of finding a solution if one exists. By

exhaustively examining all possibilities, these

algorithms eliminate the risk of missing valid solutions

due to heuristic shortcuts or optimization assumptions.

3. High Computational Complexity

The trade-off for simplicity and completeness is

typically high time and space complexity. Brute force

algorithms often exhibit exponential or polynomial

time complexity, making them impractical for large-

scale problems without optimization.

III. IMPLEMENTATION

In this section, a demonstration of the regex method for

adaptive citation is presented. The focus of this section is to

demonstrate the implementation of the proposed system in

handling citation extraction and formatting. The program is

written in Python and designed to extract citation data using

regex, covering various types of sources such as journal articles,

news websites, and encyclopedia entries.

This implementation also includes adaptive regex handling

based on source type, allowing the system to adjust its pattern

matching depending on the structure of the input. Furthermore,

it features an auto style conversion engine that supports multiple

Makalah IF2211 Strategi Algoritma – Semester II Tahun 2024/2025

citation formats including APA, MLA, and Chicago. The system

is also capable of processing multiple article URLs in a single

batch, making it efficient for users dealing with large volumes

of references.

A. Input Data

This program takes input from the command line interface

(CLI), allowing the user to choose between using example URLs

for citation extraction, entering their own URLs (multiple URLs

can be separated by commas), or exiting the program. Users can

enter any URL they want to extract citations from, including

journal articles, news websites, and other online sources.

B. Preprocessing

In this implementation, the source is in the form of a URL.

Therefore, the system must process the URL using HTTP

requests to retrieve the web page content. This is done by

sending a request through the requests library at python and

parsing the response with BeautifulSoup to extract relevant

metadata. The preprocessing step is handled in the

extract_from_url() method of the CitationExtractor class.

Table 3.1. Function extract_from_url
def extract_from_url(self, url: str) ->

CitationData:

 try:

 response = self.session.get(url,

timeout=10)

 response.raise_for_status()

 soup =

BeautifulSoup(response.content, 'html.parser')

 citation_data =

CitationData(url=url)

 citation_data.source_type =

self._detect_source_type(url, soup)

 citation_data.title =

self._extract_title(soup)

 citation_data.authors =

self._extract_authors(soup)

 citation_data.publication_date =

self._extract_date(soup)

 citation_data.publisher =

self._extract_publisher(soup)

 citation_data.journal =

self._extract_journal(soup)

 citation_data.doi =

self._extract_doi(soup)

 if citation_data.source_type ==

"academic":

 citation_data.volume =

self._extract_volume(soup)

 citation_data.issue =

self._extract_issue(soup)

 citation_data.pages =

self._extract_pages(soup)

 return citation_data

 except Exception as e:

 print(f"Error extracting from URL

{url}: {str(e)}")

 return CitationData(url=url,

title="Unable to extract title")

This method starts by creating a request session with a user-

agent header, which helps the program act like a regular web

browser so it can access most websites. After getting the content

from the webpage, the program reads (parses) the HTML to find

important parts needed for citations, such as the title, author(s),

date of publication, publisher, journal name, DOI, and if it is an

academic source, also volume and issue. This part will related

to other classes, Citation Extractor.

The system also checks what type of source it is. Whether it

is from an academic journal, news website, book, or just a

regular website by looking at the website address and some

specific tags in the webpage. This preprocessing step helps the

program adjust to different types of sources, so it can later create

accurate citations in the chosen format, like MLA, APA, or

Chicago.

C. Citation Extractor

1. Extract Title

The first step is to get the title from the webpage. The program

looks for meta tags like citation_title, og:title, or DC.title. If not

found, it tries to get the title from the <title> or <h1> tag. If none

are found, it returns “No title found.” It helps the program get

the title automatically from different types of websites.

2. Extract Authors

The next step is to get the author names. The program first

looks for meta tags like citation_author, author, or DC.creator.

If not found, it checks JSON-LD data in the page for author info.

If those still don’t work, the program uses regular expressions

(regex) to search for author patterns in the page text, such as “By

[Name]” or “Written by [Name]”. This helps find author names

from many types of websites, even when the structure is not

standard.

Table 3.2. Author Patterns
if not authors:

 author_patterns = [

 r'By\s+([A-Z][a-z]+\s+[A-Z][a-

z]+)',

 r'Author[s]?:\s*([^\\n]+)',

 r'Written by\s+([A-Z][a-

z]+\s+[A-Z][a-z]+)'

]

 text = soup.get_text()

 for pattern in author_patterns:

 matches = re.findall(pattern,

text)

 authors.extend(matches)

3. Extract Date

The program first looks for meta tags that usually contain

publication dates, such as citation_date, pubdate, or DC.date. If

found, then directly retrieves and normalizes the value (same

format). If not, it searches for <time> tags in the HTML,

especially those with a datetime attribute. This ensures that

structured HTML elements are prioritized.

If to find both meta tags and time tags fail, the program then

uses regular expressions (regex) as a fallback. It defines several

regex patterns to match various date formats, like DD Month

YYYY, YYYY-MM-DD, or MM/DD/YYYY. This step is

designed to brute force through the full page text, looking for

anything that resembles a date. Although this process is less

precise, it ensures a broader coverage across different website

structures.

This brute force matching is especially important for sources

that not follow a standard structure. Once a match is found, the

program passes the date string into a normalization function that

tries multiple format conversions to standardize it as YYYY-

Makalah IF2211 Strategi Algoritma – Semester II Tahun 2024/2025

MM-DD. If all else fails, it attempts to at least extract the year

as a fallback. This adaptive, multi-layered strategy allows the

system to extract publication dates from a wide range of source

types and layouts.

Table 3.3. Date Patterns
date_patterns = [

 r'\b([A-Za-

z]+,\s*\d{1,2}\s+(Jan|Feb|Mar|Apr|Mei|Jun|Jul|Agu|

Sep|Okt|Nov|Des)\s+\d{4}(?:\s+\d{2}:\d{2})?)',

 r'\b(\d{1,2}\s+(Jan|Feb|Mar|Apr|Mei|

Jun|Jul|Agu|Sep|Okt|Nov|Des)\s+\d{4})',

 r'\b(\d{1,2}\s+(January|February|Mar

ch|April|May|June|July|August|September|October|No

vember|December)\s+\d{4})',

 r'\b((January|February|March|April|M

ay|June|July|August|September|October|November|Dec

ember)\s+\d{1,2},\s*\d{4})',

 r'\b(\d{1,2}\s+(Jan|Feb|Mar|Apr|May|

Jun|Jul|Aug|Sep|Oct|Nov|Dec)\s+\d{4})',

 r'\b((Jan|Feb|Mar|Apr|May|Jun|Jul|Au

g|Sep|Oct|Nov|Dec)\s+\d{1,2},\s*\d{4})',

 r'\b(\d{4}-\d{2}-\d{2})',

 r'\b(\d{1,2}/\d{1,2}/\d{4})',

 r'\b(\d{1,2}-\d{1,2}-\d{4})'

]

4. Other Extraction

Same with other functions, the program uses a structured and

layered approach to extract additional citation details such as

publisher, journal title, DOI, volume, issue, and page numbers.

It first looks for specific meta tags, like citation_publisher,

citation_journal_title, citation_doi, and so on. These tags are

commonly used in academic pages and provide reliable values.

If meta tags are missing, some fields like DOI are searched in

the full text using regular expressions. For example, the DOI is

matched with the pattern doi:\s*(10.\d+/...), allowing the

program to extract it even when it's embedded in plain text. This

shows the fallback brute force technique, where the program

scans all visible text to catch missing structured data. For page

numbers, it combines citation_firstpage and citation_lastpage to

generate a full page range like 123–130. This consistent and

adaptive extraction ensures that even if one method fails, other

strategies can still retrieve the needed information.

D. Citation Formatter

After retrieving and storing citation data in the CitationData

class, then is formatting this data into proper citation styles.

Each implementing a standard format such as APA, MLA, or

Chicago. These formatter classes inherit from a base class

CitationFormatter, which defines a common interface for

formatting.

Example is the APAFormatter class defines how to format

author names into "Last, F. M." style, handles publication dates

in parentheses, and places the journal title, volume, issue, and

pages in the correct APA layout. It also prioritizes the use of

DOI when available, followed by a fallback to the article’s URL.

On the other class, the ChicagoFormatter uses a more

narrative style, often including the title in quotation marks,

placing the date in parentheses, and appending the access date

and URL at the end for online resources. The formatter also

decides when to use “et al.” for more than three authors.

Each formatter includes a helper method such as

_join_authors, which ensures that authors are combined using

the correct punctuation and conjunctions based on the citation

style. This modular approach makes it easy to support additional

formats in the future by creating new formatter classes.

So this formatting component translates raw citation data into

professional, style-compliant references that can be directly

used in scholarly writing or bibliography generation.

Figure 3.1. Program Workflow

Source: Personal Collection

IV. TESTING AND ANALYSIS

The testing results show that the algorithm works well in

extracting information from a URL and converting it into the

selected citation style. One example test case used the URL:

https://www.nature.com/articles/nature12373.

Figure 4.1. Add Citation Source by Google Docs

Source: Personal Collection

When trying the automatic citation feature in Google Docs, it

could not process the link correctly. It first asks the user to

choose the type of source, and even after pasting the link, it often

returns an error saying "no result found" and suggests checking

the URL and try again.

Figure 4.2. Result Citation by Google Docs

Source: Personal Collection

In contrast, this program automatically detects the type of

source from the link and generates the correct citation without

requiring any manual input. When the program starts, the user is

prompted to choose an option, either to enter an example link,

provide a custom URL (or multiple URLs), or exit the program.

In the example case, the program processes a single link and

returns the citation in APA style. The output can be seen in the

image below.

Makalah IF2211 Strategi Algoritma – Semester II Tahun 2024/2025

Figure 4.3. Result Citation from Program

Source: Personal Collection

One of the main strengths of this system is its effectiveness in

adaptive extraction. Unlike conventional citation tools that

require users to manually select the type of source (e.g., website,

or journal article), this program automatically analyzes the

content of the given URL and determines the appropriate source

type. This enables the system to handle a wide range of inputs,

such as academic papers, news articles, and blogs, without

additional user intervention.

From the results, it is clear that this approach is effective in

extracting and generating citations automatically. The system

leverages pattern matching with regular expressions to search

for relevant metadata such as dates, DOIs, publishers, and

journal titles. This process resembles a brute force method,

where multiple regex patterns are tried sequentially to find the

correct match for each field. By systematically attempting all

possible patterns, the system increases its flexibility and

adaptability, ensuring successful extraction across various

source structures and formats.

Another key advantage is the flexibility of regex matching

itself. Different websites often format metadata in unique ways,

using different HTML tag names or content structures. By

preparing multiple regular expression patterns for each type of

data, the system ensures broad compatibility. This approach

allows it to adapt to inconsistencies in HTML structures, such

as varying tag names, missing attributes, or different metadata

conventions, making it more robust and reliable.

The program supports automatic conversion to multiple

citation styles too. This is made possible through the separation

between data extraction and citation formatting, which is

managed by classes like APAFormatter and ChicagoFormatter.

This modular design simplifies the process of generating output

in different citation formats. Users can easily switch styles

without modifying the extraction logic, and the system will

produce correctly formatted citations accordingly.

Figure 4.4. Automatic Conversion Citation from Program

Source: Personal Collection

This program also supports multiple URLs, making it

efficient when there are many links that need to be converted

into references. However, it is less efficient in terms of

processing time, as it uses a brute-force approach that

sequentially tries multiple patterns to find a match.

Figure 4.5. Result Citation from Program

Source: Personal Collection

Figure 4.6. Result Multiple Citation from Program

Source: Personal Collection

V. CONCLUSION

In conclusion, the implementation of pattern matching using

regular expressions proves to be highly effective for identifying

and generating citations directly from URLs. This approach

ensures that all relevant text on a webpage is thoroughly

scanned, either through structured HTML tags or flexible regex

patterns, allowing for broad coverage and accurate data

extraction across various types of online sources.

By systematically checking multiple predefined patterns, the

system increases its chances of successfully retrieving citation-

related information. However, one limitation is that not all

possible pattern variations can be anticipated, as different

websites may structure their content in unique and inconsistent

ways. While this brute force strategy is effective in many cases,

it can lead to higher computational costs and longer processing

times.

Therefore, future development should focus on optimizing

the extraction process by search more efficient and intelligent

pattern matching strategies. Despite this, the program

demonstrates promising functionality, especially with its ability

to automatically detect source types and support multiple URL

inputs, which significantly improves user convenience and

citation accuracy.

VI. APPENDIX

Github Link: https://github.com/mineraleee/CitationExtraction

Video Link at Youtube: https://youtu.be/EbEMGmCrPn4

https://github.com/mineraleee/CitationExtraction
https://youtu.be/EbEMGmCrPn4

Makalah IF2211 Strategi Algoritma – Semester II Tahun 2024/2025

VII. ACKNOWLEDGMENT

All praise and gratitude are directed to God Almighty, for His

blessings and guidance that have enabled me to complete this

paper titled “Adaptive Citation Extraction with Regex and

String Matching for Multiple Source Types and Auto-

Conversion” on time. This paper was prepared as part of the

assignment for the IF2211 Algorithm Strategy course.

I would like to express sincere appreciation to Dr. Ir. Rinaldi,

M.T., for his dedicated guidance and for generously sharing his

knowledge throughout the course. The insights provided have

been invaluable in completing this paper.

I am especially thankful to my parents for their continuous

support, both emotionally and financially, throughout this

journey. Their encouragement has been a constant source of

motivation. I also want to extend my heartfelt thanks to my

friends in the Split Bill group for the collaboration,

encouragement, and shared ideas that greatly enriched this

project.

I recognize that this paper is not without flaws. I sincerely

apologize for any errors or omissions and hope that this work

can still provide meaningful insights and contribute, even in a

small way, to the development of knowledge in this field.

REFERENCES

[1] Lehigh University Libraries, "Citation and Plagiarism," [Online].

Available: https://libraryguides.lehigh.edu/citation. [Accessed: June 22,

2025].
[2] Munir, Rinaldi, "String Matching," [Online]. Available:

https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/23-

Pencocokan-string-(2025).pdf. [Accessed: June 22, 2025].
[3] Munir, Rinaldi, "String Matching dengan Regular Expression," [Online].

Available: https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-
2025/24-String-Matching-dengan-Regex-(2025).pdf. [Accessed: June 23,

2025].

[4] Munir, Rinaldi, "Algoritma Brute Force," [Online]. Available:

https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/02-

Algoritma-Brute-Force-(2025)-Bag1.pdf. [Accessed: June 23, 2025].

STATEMENT

I hereby declare that the paper I wrote is my own writing, not

an adaptation or translation of someone else's paper, and not

plagiarized.

Bandung, 24 June 2025

Heleni Gratia M Tampubolon

(13523107)

